Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure
Author(s) -
Xiaojie Wu,
Fanzhi Meng,
Zhenzhong Zhang,
Yingning Yu,
Xiaojuan Liu,
Jian Meng
Publication year - 2014
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.00a735
Subject(s) - materials science , phosphor , optoelectronics , quantum efficiency , energy conversion efficiency , silicon , band gap , optics , solar cell efficiency , solar cell , ion , absorption (acoustics) , photon upconversion , doping , physics , composite material , quantum mechanics
Down-conversion is a feasible way to improve conversion efficiency of silicon solar cell. However, the width of excitation band for down-converter based on trivalent lanthanide ions is still not satisfying. Here, we designed and fabricated a heterostructural down-converter composed of Y₂O₃: [(Tb³⁺-Yb³⁺), Li⁺] quantum cutting phosphor and ZnSe. The ZnSe phase was used to absorb the incident light with energy larger than its bandgap, and transfer the energy to Tb³⁺-Yb³⁺ quantum cutting couple. Short-wavelength incident light was finally converted into a strong Yb³⁺ emission at about 1000 nm, locating at the maximal spectral response of silicon solar cell. The excitation band of the down-conversion covers a wide region of 250-550 nm. Benefiting from the energy match between ZnSe bandgap and ⁷F₆→⁵D₄ absorption of Tb³⁺ ions, the bandwidth of down-conversion is almost maximized.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom