z-logo
open-access-imgOpen Access
The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods
Author(s) -
Yue Liu,
Chuanchuan Yang,
Feng Yang,
Hongbin Li
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.006276
Subject(s) - orthogonal frequency division multiplexing , phase noise , passive optical network , laser linewidth , laser , optics , wavelength division multiplexing , electronic engineering , physics , computer science , optoelectronics , telecommunications , wavelength , engineering , channel (broadcasting)
Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usually<100 KHz). To solve this problem, we introduce the orthogonal basis expansion based (OBE) phase noise suppression method to the coherent OFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here