z-logo
open-access-imgOpen Access
Dependent scattering in Intralipid® phantoms in the 600-1850 nm range
Author(s) -
Ben Aernouts,
Robbe Van Beers,
Rodrigo Watté,
Jeroen Lammertyn,
Wouter Saeys
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.006086
Subject(s) - scattering , materials science , optics , light scattering , scattering coefficient , static light scattering , range (aeronautics) , wavelength , scattering theory , mie scattering , forward scatter , biological small angle scattering , small angle neutron scattering , physics , neutron scattering , composite material
The effect of dependent scattering on the bulk scattering properties of intralipid phantoms in the 600-1850 nm wavelength range has been investigated. A set of 57 liquid optical phantoms, covering a wide range of intralipid concentrations (1-100% v/v), was prepared and the bulk optical properties were accurately determined. The bulk scattering coefficient as a function of the particle density could be well described with Twersky's packing factor (R(2) > 0.990). A general model was elaborated taking into account the wavelength dependency and the effect of the concentration of scattering particles (R(2) = 0.999). Additionally, an empirical approach was followed to characterize the effect of dense packing of scattering particles on the anisotropy factor (R(2) = 0.992) and the reduced scattering coefficient (R(2) = 0.999) of the phantoms. The derived equations can be consulted in future research for the calculation of the bulk scattering properties of intralipid dilutions in the 600-1850 nm range, or for the validation of theories that describe the effects of dependent scattering on the scattering properties of intralipid-like systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom