z-logo
open-access-imgOpen Access
Ultra-compact 32-channel drop filter with 100 GHz spacing
Author(s) -
Yasushi Takahashi,
Tanemasa Asano,
Daiji Yamashita,
Susumu Noda
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.004692
Subject(s) - optics , wavelength , materials science , drop (telecommunication) , wavelength division multiplexing , channel spacing , free spectral range , photonic crystal , optical filter , optoelectronics , refractive index , physics , telecommunications , computer science
We demonstrated 32-channel drop filters with 100 GHz spacing consisting of arrayed nanocavities and a waveguide in a photonic crystal silicon slab. Changing the lattice constant of the nanocavities on the subnanometer scale successfully controlled the drop wavelengths at 100 GHz spacing in the wavelength range between 1510 and 1550 nm. The device size was as small as 15 μm × 270 μm, and the variation in drop wavelengths was less than 0.3 nm in terms of standard deviation. We also present a movie showing the operation of the drop filter, demonstrating that the arrayed nanocavities have the potential for developing ultracompact 100 GHz spaced filters in a dense wavelength division multiplexing system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here