Femtosecond imaging of nonlinear acoustics in gold
Author(s) -
Thomas Pézeril,
Christoph Klieber,
V. Shalagatskyi,
G. Vaudel,
Vasily V. Temnov,
Oliver G. Schmidt,
Denys Makarov
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.004590
Subject(s) - femtosecond , optics , laser , ultrashort pulse , picosecond , materials science , amplifier , optoelectronics , physics , cmos
We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution. We illustrate the technique by time-resolved imaging of the nonlinear reshaping of a laser-excited picosecond acoustic pulse after propagation through a thin gold layer. Image analysis reveals the direct 2D visualization of the nonlinear acoustic propagation of the picosecond acoustic pulse. Many ultrafast pump-probe investigations can profit from this technique because of the wealth of information it provides over a typical single diode and lock-in amplifier setup, for example it can be used to image ultrasonic echoes in biological samples.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom