
QAM quantum stream cipher using digital coherent optical transmission
Author(s) -
Masataka Nakazawa,
Toshihiko Hirooka,
Keisuke Kasai
Publication year - 2014
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.004098
Subject(s) - quadrature amplitude modulation , qam , computer science , transmission (telecommunications) , phase shift keying , encryption , electronic engineering , optics , physics , bit error rate , telecommunications , channel (broadcasting) , computer network , engineering
A Quantum Stream Cipher (QSC) using Quadrature Amplitude Modulation (QAM) is presented to greatly increase the secure degree compared with ASK or PSK/QSC. We propose encoding multi-bit data in one symbol with a multi-bit basis state, resulting in QAM/QSC, which employs amplitude and phase encryption of the light beam simultaneously. A 16 QAM/QSC experiment at 10 Gbit/s was successfully carried out over 160 km using a digital coherent optical transmission technique, where 16 QAM data were encrypted in a constellation with 32 × 32~4096 × 4096 symbols. We show experimentally that the Number of Masked Signals (NMS) in the quantum noise Γ(QAM) for QAM/QSC becomes a square multiple larger than Γ(ASK) for ASK/QSC. Γ(QAM) exceeds 10,000. This result indicates that the QSC technique is more robust against eavesdroppers than ASK or PSK/QSC.