z-logo
open-access-imgOpen Access
Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere
Author(s) -
Rong Chen,
Lin Liu,
Shijun Zhu,
Gaofeng Wu,
Fei Wang,
Yangjian Cai
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.001871
Subject(s) - physics , optics , beam (structure) , turbulence , m squared , atmosphere (unit) , coherence (philosophical gambling strategy) , laguerre polynomials , atmospheric optics , laser beam quality , gaussian , computational physics , meteorology , quantum mechanics , laser beams , laser
Laguerre-Gaussian Schell-model (LGSM) beam was proposed in theory [Opt. Lett.38, 91 (2013 Opt. Lett.38, 1814 (2013)] just recently. In this paper, we study the propagation of a LGSM beam in turbulent atmosphere. Analytical expressions for the cross-spectral density and the second-order moments of the Wigner distribution function of a LGSM beam in turbulent atmosphere are derived. The statistical properties, such as the degree of coherence and the propagation factor, of a LGSM beam in turbulent atmosphere are studied in detail. It is found that a LGSM beam with larger mode order n is less affected by turbulence than a LGSM beam with smaller mode order n or a GSM beam under certain condition, which will be useful in free-space optical communications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom