
Chaos-assisted tunneling in a deformed microcavity laser
Author(s) -
Myung-Woon Kim,
Seog-Hoon Rim,
Yi Cui,
Chil-Min Kim
Publication year - 2013
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.032508
Subject(s) - lasing threshold , resonance (particle physics) , physics , quantum tunnelling , phase space , laser , optics , chaotic , atomic physics , quantum mechanics , artificial intelligence , computer science
We investigate the impact of local dynamics on chaos-assisted tunneling in a highly deformed microcavity whose classical ray dynamics exhibits a small measure of trapezoidal-shaped orbit (TSO) stability islands in a main chaotic sea. These two classically completely decomposed regions in phase space can support resonance modes of their own respectively. Using numerical ray and wave analyses, we show that the emission characteristics of the TSO resonance mode are determined by local ray dynamics near TSO islands. The emission characteristics of the other high-Q resonance modes, on the other hand, are governed by usual ray-wave correspondence. We experimentally demonstrate that the TSO emission mode can be lased without selective excitations by devising a half-moon shaped highly deformed cavity. And we also show that the emission characteristics of the TSO lasing modes are well explained by numerical ray and wave analyses.