
Robust adaptive phase-shifting demodulation for testing moving wavefronts
Author(s) -
Orlando M. Medina,
J. C. Estrada,
Manuel Servı́n
Publication year - 2013
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.029687
Subject(s) - wavefront , demodulation , optics , phase (matter) , interferometry , adaptive optics , wavefront sensor , pixel , computer science , physics , optical path , astronomical interferometer , telecommunications , channel (broadcasting) , quantum mechanics
Optical interferometers are very sensitive when environment perturbations affect its optical path. The wavefront under test is not static at all. In this paper, it is proposed a novel and robust phase-shifting demodulation method. This method estimates the interferogram's phase-shifting locally, reducing detuning errors due to environment perturbations like vibrations and/or miscalibrations of the Phase-Shifting Interferometry setup. As we know, phase-shifting demodulation methods assume that the wavefront under test is static and there is a global phase-shifting for all pixels. The demodulation method presented here is based on local weighted least-squares, letting each pixel have its own phase-shifting. This is a different and better approach, considering that all previous works assume a global phase-shifting for all pixels of interferograms. Seeing this method like a black box, it receives an interferogram sequence of at least 3 interferograms and returns the modulating phase or wavefront under test. Here it is not necessary to know the phase shifts between the interferograms. It does not assume a global phase-shifting for the interferograms, is robust to the movements of the wavefront under test and tolerates miscalibrations of the optical setup.