
Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers
Author(s) -
Yuhong Yao,
Wayne H. Knox
Publication year - 2013
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.026612
Subject(s) - femtosecond , optics , photonic crystal fiber , materials science , laser , fiber laser , dispersion (optics) , wavelength , optoelectronics , photonic crystal , crystal (programming language) , physics , computer science , programming language
We report a novel scheme of generating broadly tunable femtosecond mid-IR pulses based on difference frequency mixing the outputs from dual photonic crystal fibers (PCF). With a 1.3 W, 1035 nm, 300 fs and 40 MHz Yb fiber chirped pulse amplifier as the laser source, a PCF with single zero dispersion wavelength (ZDW) at the laser wavelength is employed to spectrally broaden a portion of the laser pulses. Facilitated by self-phase modulation, its output spectrum possesses two dominant outermost peaks that can be extended to 970 nm and 1092 nm. A different PCF with two closely spaced ZDWs around the laser wavelength is used to generate the intense Stokes pulses between 1240 - 1260 nm. Frequency mixing the dual PCFs outputs in an AgGaS(2) crystal results in mid-IR pulses broadly tunable from 4.2 μm to 9 μm with a maximum average power of 640 µW at 4.5 μm, corresponding to 16 pJ of pulse energy.