z-logo
open-access-imgOpen Access
Coherent-form energy conservation relation for the elastic scattering of a guided mode in a symmetric scattering system
Author(s) -
Haitao Liu
Publication year - 2013
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.024093
Subject(s) - scattering , superposition principle , physics , scattering theory , optics , elastic scattering , reflection (computer programming) , computational physics , classical mechanics , quantum mechanics , computer science , programming language
We propose a coherent-form energy conservation relation (ECR) that is generally valid for the elastic transmission and reflection of a guided mode in a symmetric scattering system. In contrast with the classical incoherent-form ECR, |τ|2 + |ρ|2≤1 with τ and ρ denoting the elastic transmission and reflection coefficients of a guided mode, the coherent-form ECR is expressed as |τ + ρ|≤1, which imposes a constraint on a coherent superposition of the transmitted and reflected modes. The coherent-form ECR is rigorously demonstrated and is numerically tested by considering different types of modes in various scattering systems. Further discussions with the scattering matrix formalism indicate that two coherent-form ECRs, |τ + ρ|≤1 and |τ-ρ|≤1, along with the classical ECR |τ|2 + |ρ|2≤1 constitute a complete description of the energy conservation for the elastic scattering of a guided mode in a symmetric scattering system. The coherent-form ECR provides a common tool in terms of energy transfer for understanding and analyzing the scattering dynamics in currently interested scattering systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here