
Phase measurement of fast light pulse in electromagnetically induced absorption
Author(s) -
Yoon-Seok Lee,
Hee Jung Lee,
Han Seb Moon
Publication year - 2013
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.022464
Subject(s) - optics , pulse (music) , interferometry , materials science , phase (matter) , femtosecond pulse shaping , multiphoton intrapulse interference phase scan , electromagnetically induced transparency , bandwidth limited pulse , physics , laser , ultrashort pulse , quantum mechanics , detector
We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.