DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications
Author(s) -
Karol Krzempek,
Grzegorz Soboń,
Krzysztof M. Abramski
Publication year - 2013
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.020023
Subject(s) - materials science , optics , laser , lithium niobate , fiber laser , ytterbium , amplifier , optoelectronics , radiation , spectroscopy , wavelength , erbium , physics , cmos , quantum mechanics
We demonstrate a compact mid-infrared (mid-IR) radiation source based on difference frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystal. The system incorporates a dual-wavelength master oscillator power amplifier (MOPA) source capable of simultaneous amplification of 1064 nm and 1548 nm signals in a common active fiber co-doped with erbium and ytterbium ions. Two low-power seed lasers were amplified by a factor of 14.4 dB and 23.7 dB for 1064 nm and 1548 nm, respectively and used in a nonlinear DFG setup to generate 1.14 mW of radiation centered at 3.4 μm. The system allowed for open-path detection of methane (CH(4)) in ambient air with estimated minimum detectable concentration at a level of 26 ppbv.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom