z-logo
open-access-imgOpen Access
Low-voltage quantum well microring-enhanced Mach-Zehnder modulator
Author(s) -
Hiroki Kaneshige,
Rajdeep Gautam,
Yuta Ueyama,
Redouane Katouf,
Taro Arakawa,
Yasuo Kimura
Publication year - 2013
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.016888
Subject(s) - extinction ratio , materials science , optoelectronics , optics , modulation index , optical modulator , modulation (music) , resonator , electro optic modulator , phase modulation , quantum well , voltage , physics , pulse width modulation , wavelength , phase noise , laser , quantum mechanics , acoustics
Modulation characteristics of a novel InGaAs/InAlAs multiple quantum well (MQW) microring-enhanced Mach-Zehnder modulator (MRE-MZM) is investigated in detail and its low-voltage operation with high extinction ratio is demonstrated. The MZM has a single microring resonator in one arm and is driven by the change in electrorefractive index induced by the quantum-confined Stark effect in the MQW core layer. As the MQW, a multiple five-layer asymmetric coupled quantum well (FACQW) is used to obtain a large electrorefractive index change. The driving voltage of the proposed MZM is significantly reduced owing to the enhanced phase shift in the microring resonator. High-mesa waveguide structures are grown by solid-source molecular beam epitaxy and fabricated by inductively coupled plasma etching. A directional coupler with an asymmetric branching ratio is used as an input coupler to prevent the degradation of the extinction ratio of the MZM. The extinction ratio of the fabricated MRE-MZM is approximately 27 dB. The product of the half-wave voltage and phase shifter length, V(π) · L, is 1.7 Vmm in static modulation. This value is one-quarter that of a conventional MZM with the same waveguide structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here