
Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging
Author(s) -
Harold Dehez,
Michel Piché,
Yves De Koninck
Publication year - 2013
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.015912
Subject(s) - optics , microscopy , scanning confocal electron microscopy , materials science , resolution (logic) , microscope , light sheet fluorescence microscopy , laser , laser scanning , super resolution microscopy , image resolution , confocal microscopy , physics , computer science , artificial intelligence
Laser scanning microscopy allows for three-dimensional imaging of cells with molecular specific labeling. However the spatial resolution of optical microscopy is fundamentally limited by the diffraction of light. In the last two decades many techniques have been introduced to enhance the resolution of laser scanning microscopes. However most of these techniques impose strong constraints on the specimen or rely on complex optical systems. These constraints limit the applicability of resolution improvement to various imaging modalities and sample types. To overcome these limitations, we introduce here a novel approach, which we called Switching LAser Mode (SLAM) microscopy, to enhance resolution and contrast in laser scanning microscopy. SLAM microscopy relies on subtracting images obtained with dark and bright modes, and exploits the smaller dimensions of the dark spot of the azimuthally polarized TE 01 mode. With this approach, resolution is improved by a factor of two in confocal microscopy. The technique is not based on complex nonlinear processes and thus requires laser power similar to that used in conventional imaging, minimizing photo-damage. The flexibility of the approach enables retrofitting in commercial confocal and two-photon microscopes and opens avenues for resolution enhancement in fluorescence-independent microscopy.