
Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators
Author(s) -
Guangtao Cao,
Hongjian Li,
Shiping Zhan,
Hui Xu,
Zhimin Liu,
Zhihui He,
Yun Wang
Publication year - 2013
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.009198
Subject(s) - electromagnetically induced transparency , plasmon , resonator , stub (electronics) , finite difference time domain method , coupled mode theory , optics , slow light , physics , optoelectronics , refractive index , photonic crystal , electronic engineering , engineering
We demonstrate the realization of plasmonic analog of electromagnetically induced transparency (EIT) in a system composing of two stub resonators side-coupled to metal-dielectric-metal (MDM) waveguide. Based on the coupled mode theory (CMT) and Fabry-Perot (FP) model, respectively, the formation and evolution mechanisms of plasmon-induced transparency by direct and indirect couplings are exactly analyzed. For the direct coupling between the two stub resonators, the FWHM and group index of transparent window to the inter-space are more sensitive than to the width of one cut, and the high group index of up to 60 can be achieved. For the indirect coupling, the formation of transparency window is determined by the resonance detuning, but the evolution of transparency is mainly attributed to the change of coupling distance. The consistence between the analytical solution and finite-difference time-domain (FDTD) simulations verifies the feasibility of the plasmon-induced transparency system. It is also interesting to notice that the scheme is easy to be fabricated and may pave the way to highly integrated optical circuits.