
Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks
Author(s) -
Su Jin Kim,
Kyeong Heon Kim,
Tae Geun Kim
Publication year - 2013
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.008062
Subject(s) - materials science , carbon nanotube , optoelectronics , surface roughness , diode , light emitting diode , optics , light scattering , voltage , surface finish , scattering , nanotechnology , composite material , electrical engineering , physics , engineering
In this study, reduced forward voltage and improved light output power of GaN-based vertical light-emitting diodes (VLEDs) incorporating single-walled carbon nanotube (SWNT)-networks is reported. The SWNT-networks were directly formed on a roughened (textured) n-GaN surface via a solution-processed dip-coating method. The surface-roughened VLEDs with the proposed SWNT-networks had a forward voltage of 3.84 V at 350 mA, lower than that of the surface-roughened VLEDs, and exhibited an increase in light output power by 12.9% at 350 mA compared to the surface-roughened VLEDs. These improved electrical and optical properties could be attributed to the SWNT-networks put on the roughened n-GaN surface, which increase the lateral current transport and create scattering of light through the formation of additional roughness.