
Tunable elastomer-based virtually imaged phased array
Author(s) -
Philipp Metz,
Hendrik Block,
Christopher Behnke,
Matthias C. Krantz,
Martina Gerken,
Jost Adam
Publication year - 2013
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.003324
Subject(s) - materials science , optics , free spectral range , resonator , phased array , wafer , dispersion (optics) , elastomer , optoelectronics , telecommunications , physics , computer science , antenna (radio) , composite material
Virtually imaged phased arrays (VIPAs) offer a high potential for wafer-level integration and superior optical properties compared to conventional gratings. We introduce an elastomer-based tunable VIPA enabling fine tuning of the dispersion characteristics. It consists of a poly-dimethylsiloxane (PDMS) layer sandwiched between silver bottom and top coatings, which form the VIPA's high reflective and semi-transparent mirror, respectively. The latter also acts as an electrode for Joule heating, such that the optical PDMS resonator cavity tuning is carried out via a combination of thermal expansion and the thermo-optic effect. Analogous to the free spectral range (FSR), based on a VIPA specific dispersion law, we introduce a new characteristic VIPA performance measure, namely the free angular range (FAR). We report a tuning span of one FAR achieved by a 7.2K temperature increase of a 170μm PDMS VIPA. Both resonance quality and tunability are analyzed in numerical simulations and experiments.