
Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer
Author(s) -
Yin Wang,
Michał Nikodem,
Gerard Wysocki
Publication year - 2013
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.21.000740
Subject(s) - faraday effect , optics , heterodyne detection , spectrometer , quantum cascade laser , heterodyne (poetry) , physics , materials science , polarization (electrochemistry) , laser , magnetic field , chemistry , quantum mechanics , acoustics
A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10(-8) rad/Hz(1/2) is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz(1/2) was achieved using the R(17/2) transition of NO at 1906.73 cm(-1).