z-logo
open-access-imgOpen Access
High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology
Author(s) -
Shinsuke Tanaka,
Seok–Hwan Jeong,
Shigeaki Sekiguchi,
T. Kurahashi,
Yu Tanaka,
Ken Morito
Publication year - 2012
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.028057
Subject(s) - materials science , optoelectronics , laser , optics , longitudinal mode , lasing threshold , flip chip , silicon , chip , wavelength , electrical engineering , physics , adhesive , layer (electronics) , composite material , engineering
An Si/III-V hybrid laser oscillating at a single wavelength was developed for use in a large-scale Si optical I/O chip. The laser had an InP-based reflective semiconductor optical amplifier (SOA) chip integrated with an Si wavelength-selection-mirror chip in a flip-chip configuration. A low coupling loss of 1.55 dB at the Si-SOA interface was accomplished by both mode-field-matching between Si-SOA waveguides and accurately controlling the bonding position. The fabricated Si hybrid laser exhibited a very low threshold current of 9.4 mA, a high output power of 15.0 mW, and a high wall-plug efficiency of 7.6% at 20 °C. Moreover, the device maintained a high output power of >10 mW up to 60°C due to the high thermal conductance between the SOA chip and Si substrate. The short cavity length of the flip-chip bonded laser expanded the longitudinal mode spacing. This resulted in temperature-stable single longitudinal mode lasing and a low RIN level of <-130 dB/Hz.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom