A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection
Author(s) -
Chung-De Chen,
Yu-Jen Wang,
Pin Chang
Publication year - 2012
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.027003
Subject(s) - materials science , microelectromechanical systems , actuator , optics , lead zirconate titanate , laser scanning , scanning electron microscope , laser , piezoelectricity , ceramic , optoelectronics , ferroelectricity , electrical engineering , physics , dielectric , composite material , engineering
This study presents a novel design for a two-axis scanning device driven by lead-zirconate-titanate (PZT) ceramic. The proposed device consists of a scanning mirror and a Y-shaped piezoelectric actuator. The scanning mirror was fabricated using an MEMS process involving three masks. Experimental results show that the fast and slow frequencies at resonance are 25.0 kHz and 0.56 kHz, respectively. The optical scanning angles are 27.6° and 39.9°. The power consumption of the device is 13.4 mW at a driving voltage of 10 V. This study also develops a laser projection module integrated with the scanning device. The module can project a 2-D image at a resolution of 640 x 480.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom