z-logo
open-access-imgOpen Access
Small-polaron based holograms in LiNbO_3 in the visible spectrum
Author(s) -
H. Brüning,
Volker Dieckmann,
B. Schoke,
Kay-Michael Voit,
M. Imlau,
G. Corradi,
C. Merschjann
Publication year - 2012
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.013326
Subject(s) - polaron , optics , materials science , diffraction efficiency , lithium niobate , holography , relaxation (psychology) , photorefractive effect , diffraction , phase (matter) , electron , molecular physics , physics , psychology , social psychology , quantum mechanics
Diffraction efficiency, relaxation behavior and dependence on pump-beam intensity of small-polaron based holograms are studied in thermally reduced, nominally undoped lithium niobate in the visible spectrum (λ = 488 nm). The pronounced phase gratings with diffraction efficiency up to η = (10.8 ± 1.0)% appeared upon irradiation by single ns-laser pulses (λ = 532 nm) and are comprehensively assigned to the optical formation of spatially modulated densities of small bound NbLi4+ electron polarons, NbLi4+:NbNb4+ electron bipolarons, and O⁻ hole polarons. A remarkable quadratic dependence on the pump-beam intensity is discovered for the recording configuration K || c-axis and can be explained by the electro-optic contribution of the optically generated small bound polarons. We discuss the build-up of local space-charge fields via small-polaron based bulk photovoltaic currents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom