
Very long range quasi-Fourier spectroscopy for narrowband lasers
Author(s) -
Masaaki Inoue,
Fumihiko Ito,
Xinyu Fan,
Yusuke Koshikiya
Publication year - 2012
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.00b566
Subject(s) - laser linewidth , optics , laser , coherence (philosophical gambling strategy) , rayleigh scattering , interferometry , speckle pattern , materials science , physics , quantum mechanics
The measurement of the spectral broadening, or temporal coherence property of very narrow linewidth lasers is not an easy task, while such a measurement is essential in any interferometric applications of the lasers. The beat note between two assumingly identical lasers only provides the convolutional spectral profile of the two lasers, but not characterizes the single laser. The delayed self-heterodyne interferometer (DSHI) would not be effective for kHz linewidth range because the finite delay cannot realize complete de-correlation. Here, we demonstrate, for the first time to our knowledge, the complete characterization of the modulus of the degree of coherence (DOC) of kHz linewidth lasers, with a self-referenced fashion where any other reference beam is not used, accordingly, characterize the spectral profile. The method is based on speckle statistical analysis of the Rayleigh scattering in the coherent fiber reflectometry, and would be a novel strong tool to characterize very narrow linewidth lasers.