z-logo
open-access-imgOpen Access
Pulse propagation through a slab with time-periodic dielectric function ε(t)
Author(s) -
Jorge R. Zurita-Sánchez,
J.H. Abundis-Patino,
P. Halevi
Publication year - 2012
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.005586
Subject(s) - physics , pulse (music) , optics , monochromatic color , superposition principle , slab , monochromatic electromagnetic plane wave , quantum mechanics , detector , geophysics
We describe pulse propagation through a slab with periodic dielectric function ε(t), thus extending our previous investigation for monochromatic incidence [Phys. Rev. A 79, 053821 (2009)]. Based on the concepts of phase and group delays, we prove that, for an incident quasi-monochromatic pulse, the transmitted pulse can be expressed as a superposition of partial pulses that are exact replicas of the incident pulse and that exit the slab with a time delay. These partial pulses have harmonic carrier frequencies ω c - nΩ (n is an integer, ω c is the carrier frequency of the incident pulse, and Ω = 2π/T is the slab modulation frequency). We find numerically that these partial pulses can be fast (peak velocity vn > c or vn < 0) or slow (vn << c). Further, we investigate the peak velocity v p of the outcoming pulse for several cases. We find that this peak velocity v p and the partial peak velocities vn do not diverge--as occurs to the group velocity v g of the bulk dynamic-periodic medium when ω c = Ω/2. We expect that these results could be verified in the microwave regime [see Halevi et al., Proc. SPIE 8095, 80950I (2011)].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom