
Fast fabrication of nano-structured anti-reflection layers for enhancement of solar cells performance using plasma sputtering and infrared assisted roller embossing techniques
Author(s) -
ShihJung Liu,
C.H. Liao
Publication year - 2012
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.005143
Subject(s) - materials science , embossing , polyethylene terephthalate , fabrication , roll to roll processing , electroforming , scanning electron microscope , sputtering , optics , nano , optoelectronics , solar cell , layer (electronics) , composite material , thin film , nanotechnology , medicine , alternative medicine , physics , pathology
This paper reports the continuous fabrication of dual-side nano-structured anti-reflection protective layer for performance enhancement of solar cells using plasma sputtering and infrared assisted roller embossing techniques. Nano-structures were first deposited onto the surface of glass substrates using the plasma sputtering technique. After electroforming, a nickel master mold containing nano-array of 30 nm was obtained. The mold was then attached to the surfaces of the two metallic rollers in an infrared assisted roll-to-roll embossing facility. The embossing facility was used to replicate the nano-structures onto 60 μm thick polyethylene terephthalate (PET) films in the experiments. The embossed films were characterized using UV-vis spectrophotometer, atomic force microscope (AFM), and scanning electron microscope (SEM); its total conversion efficiency for solar cells was also measured by a solar simulator. The experimental results showed that the fabricated films could effectively reduce the reflectance and increase the conversion efficiency of solar cells. The proposed method shows great potential for fast fabrication of the anti-reflection protective layer of solar cells due to its simplicity and versatility.