
Chipscale, single-shot gated ultrafast optical recorder
Author(s) -
Ta-Ming Shih,
Chris H. Sarantos,
Susan Makrouhee. Haynes,
John E. Heebner
Publication year - 2011
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.20.000414
Subject(s) - optics , ultrashort pulse , picosecond , waveform , interferometry , lens (geology) , physics , temporal resolution , materials science , laser , voltage , quantum mechanics
We introduce a novel, chipscale device capable of single-shot ultrafast recording with picosecond-scale resolution over hundreds of picoseconds of record length. The device consists of two vertically-stacked III-V planar waveguides forming a Mach-Zehnder interferometer, and makes use of a transient, optically-induced phase difference to sample a temporal waveform injected into the waveguides. The pump beam is incident on the chip from above in the form of a diagonally-oriented stripe focused by a cylindrical lens. Due to time-of-flight, this diagonal orientation enables the sampling window to be shifted linearly in time as a function of position across the lateral axis of the waveguides. This time-to-space mapping allows an ordinary camera to record the ultrafast waveform with high fidelity. We investigate the theoretical limits of this technique, present a simulation of device operation, and report a proof-of-concept experiment in GaAs, demonstrating picosecond-scale resolution over 140 ps of record length.