
Numerical simulation of vertical cavity surface emitting lasers
Author(s) -
Benjamin Klein,
Leonard F. Register,
Matt Grupen,
K. Hess
Publication year - 1998
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.2.000163
Subject(s) - optics , laser , solver , semiconductor laser theory , vertical cavity surface emitting laser , modal , eigenvalues and eigenvectors , physics , optoelectronics , materials science , computer science , quantum mechanics , polymer chemistry , programming language
The semiconductor laser simulator MINILASE is being extended to simulate vertical cavity surface emitting lasers (VCSELs). The electronic system analysis for VCSELs is identical to that for edge emitting lasers. A brief discussion of the capabilities of MINILASE in this domain will be presented. In order to simulate VCSELs, the optical mode solver in MINILASE must be extended to handle the reduced index guiding and significant gain guiding typical of many VCSEL structures. A new approach to solving the optical problem which employs active cavity modes rather than the standard passive cavity modes is developed. This new approach results in an integral eigenvalue equation in required gain amplitudes and corresponding modal fields. Sample results from an early implementation of a gain eigenvalue solver are shown to clarify the possibilities of this approach.