z-logo
open-access-imgOpen Access
High-temperature HgTe/CdTe multiple-quantum-well lasers
Author(s) -
I. Vurgaftman,
J. R. Meyer
Publication year - 1998
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.2.000137
Subject(s) - auger effect , lasing threshold , quantum well , laser , materials science , diode , semiconductor laser theory , optoelectronics , optics , absorption (acoustics) , infrared , auger , atomic physics , physics
While most previous studies of Hg-based mid-IR lasers have focused on either bulk Hg(1-x)Cd(x)Te alloys or thick (> 100 A) Hg(1-x)Cd(x)Te quantum wells with relatively large x, we show that much thinner (20-30 A) HgTe binary wells may be engineered to suppress both Auger recombination and intervalence free carrier absorption. On the basis of detailed numerical simulations, we predict 4.3 m cw emission at temperatures up to 220 K for optical pumping and 105 K for diode operation. In pulsed mode, we expect maximum lasing temperatures more than 100 K higher than any prior Hg-based mid-IR result.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom