z-logo
open-access-imgOpen Access
Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators
Author(s) -
Thomas B. Andersen,
Sergey I. Bozhevolnyi,
Laurent Markey,
Alain Dereux
Publication year - 2011
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.026423
Subject(s) - materials science , optics , optoelectronics , resonator , optical fiber , waveguide , surface plasmon polariton , dielectric , plasmon , wavelength , wafer , surface plasmon , physics
We demonstrate optical fiber-pigtailed temperature sensors based on dielectric-loaded surface plasmon-polariton waveguide-ring resonators (DLSPP-WRRs), whose transmission depends on the ambient temperature. The DLSPP-WRR-based temperature sensors represent polymer ridge waveguides (~1×1 µm(2) in cross section) forming 5-µm-radius rings coupled to straight waveguides fabricated by UV-lithography on a 50-nm-thick gold layer atop a 2.3-µm-thick CYTOP layer covering a Si wafer. A broadband light source is used to characterize the DLSPP-WRR wavelength-dependent transmission in the range of 1480-1600 nm and to select the DLSPP-WRR component for temperature sensing. In- and out-coupling single-mode optical fibers are then glued to the corresponding access (photonic) waveguides made of 10-µm-wide polymer ridges. The sample is heated from 21°C to 46 °C resulting in the transmission change of ~0.7 dB at the operation wavelength of ~1510 nm. The minimum detectable temperature change is estimated to be ~5.1∙10(-3) °C for the bandwidth of 1 Hz when using standard commercial optical detectors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here