z-logo
open-access-imgOpen Access
Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars
Author(s) -
Joshua D. Caldwell,
O. J. Glembocki,
Francisco J. Bezares,
Maarit Kariniemi,
Jaakko Niinistö,
Timo Hatanpää,
R. W. Rendell,
Maraizu Ukaegbu,
Mikko Ritala,
S. M. Prokes,
Charles M. Hosten,
Markku Leskelä,
Richard Kasica
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.026056
Subject(s) - nanopillar , plasmon , materials science , hot spot (computer programming) , raman scattering , atomic layer deposition , fabrication , layer (electronics) , nanoparticle , optoelectronics , deposition (geology) , chemical vapor deposition , optics , raman spectroscopy , nanotechnology , nanostructure , medicine , physics , alternative medicine , pathology , computer science , operating system , paleontology , sediment , biology
Initial reports of plasmonic 'hot-spots' enabled the detection of single molecules via surface-enhanced Raman scattering (SERS) from random distributions of plasmonic nanoparticles. Investigations of systems with near-field plasmonically coupled nanoparticles began, however, the ability to fabricate reproducible arrays of such particles has been lacking. We report on the fabrication of large-area, periodic arrays of plasmonic 'hot-spots' using Ag atomic layer deposition to overcoat Si nanopillar templates leading to reproducible interpillar gaps down to <2 nm. These plasmonic 'hot-spots' arrays exhibited over an order of magnitude increase in the SERS response in comparison to similar arrays with larger interpillar separations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here