
Optical performance of an oscillating, pinned-contact double droplet liquid lens
Author(s) -
Joseph D. Olles,
Michael Vogel,
Bernard A. Malouin,
Amir Hirsa
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.019399
Subject(s) - optics , focal length , curvature , lens (geology) , millimeter , amplitude , materials science , surface tension , curved mirror , physics , geometry , mathematics , quantum mechanics
Liquid droplets can produce spherical interfaces that are smooth down to the molecular scale due to surface tension. For typical gas/liquid systems, spherical droplets occur on the millimeter and smaller scales. By coupling two droplets, with contact lines pinned at each edge of a cylindrical hole through a plate, a biconvex lens is created. Using a sinusoidal external pressure, this double droplet system (DDS) can be readily forced to oscillate at resonance. The resulting change in the curvatures of the droplets produces a time-varying focal length. Such an oscillating DDS was introduced in 2008 [Nat. Photonics 2, 610 (2008)]. Here we provide a more comprehensive description of the system's optical performance, showing the effects of liquid volume and driving pressure amplitude on the back focal distance, radii of curvature, object distance, and image sharpness.