
High-efficiency third harmonic generation at 355nm based on La_2CaB_10O_19
Author(s) -
Jianxiu Zhang,
Lirong Wang,
Wu Yang,
Guiling Wang,
Peizhen Fu,
Yicheng Wu
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.016722
Subject(s) - materials science , optics , nanosecond , picosecond , energy conversion efficiency , laser , second harmonic generation , crystal (programming language) , wavelength , nonlinear optics , phase matching , sum frequency generation , high harmonic generation , optoelectronics , physics , computer science , programming language
La2CaB10O19 (LCB) crystals with size up to 55 × 35 × 25 mm3 have been grown by the top-seeded solution growth (TSSG) method. The refractive indices were accurately measured over the full transmission range, and the second-order nonlinear optical coefficients were determined by the Maker fringe technique. The phase-matching(PM) conditions were calculated for third-harmonic generation (THG) at different wavelengths. The THG experiments for type I and type II LCB crystals were performed. For type I LCB, a 355 nm UV light output of 5.0 mW corresponding to the conversion efficiency of 28.3% was generated under a picosecond Nd:YAG laser, and 16 W with the efficiency of 17.5% was generated under a nanosecond 1064 nm pumping source. For type II LCB, 3.5mW THG output with conversion efficiency of 21.1% was obtained under a picosecond Nd:YAG laser, and 7.6 W with the efficiency of 7.9% was generated under a nanosecond 1064 nm pumping source. The results indicated that the LCB crystal is a promising UV nonlinear optical material because of its good THG performance and nonhygroscopicity.