z-logo
open-access-imgOpen Access
Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells
Author(s) -
Shang Ju Tu,
Jinn-Kong Sheu,
Ming-Lun Lee,
ChunChieh Yang,
Kai Cheng Chang,
Y. Yeh,
Fenglan Huang,
Wei–Chih Lai
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.012719
Subject(s) - light emitting diode , materials science , optoelectronics , epitaxy , layer (electronics) , gallium nitride , optics , nanotechnology , physics
In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here