z-logo
open-access-imgOpen Access
Enhancement of the power conversion efficiency by expanding the absorption spectrum with fluorescence layers
Author(s) -
Fei Wang,
Zhijian Chen,
Lixin Xiao,
Bo Qu,
Qihuang Gong
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.00a361
Subject(s) - materials science , fluorescence , visible spectrum , optics , ultraviolet , optoelectronics , absorption (acoustics) , layer (electronics) , absorption spectroscopy , infrared , energy conversion efficiency , photochemistry , chemistry , nanotechnology , physics
The spectral response of Poly(3-hexylthiophene) (P3HT): 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) heterojunction film is between 350 nm and 650 nm, meaning that a lot of the sunlight is lost at ultraviolet and infrared regions. We fabricated solar cells by the attachment of a fluorescence layer which absorbs UV light, and emit visible light which will be re-used by P3HT, and thus the absorption spectrum is expanded. Since N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine (TPD) has high reflectance in the visible range, the usage of UV light will not manifest; when LiF is added as an antireflection layer, PCE was enhanced from 2.50% to 2.68%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom