z-logo
open-access-imgOpen Access
Low noise chirped pulse mode-locked laser using an intra-cavity Fabry-Pérot etalon
Author(s) -
Dimitrios Mandridis,
Charles Williams,
İbrahim Özdür,
Peter J. Delfyett
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.008994
Subject(s) - fabry–pérot interferometer , optics , laser , materials science , mode locking , pulse duration , picosecond , physics , optoelectronics
This work presents an extensive investigation of the performance characteristics of a semiconductor-based Theta cavity design laser with an intra-cavity Fabry-Pérot etalon operating at 100 MHz repetition rate. The Theta laser being an external cavity harmonically mode-locked semiconductor laser exhibits supermode noise that impairs its performance. A fiberized Fabry-Pérot periodic filter inserted within the Theta laser cavity mitigates the contribution of the supermode noise to the pulse-to-pulse energy variance by 20 times. The laser has both a compressed output with picosecond pulse duration and a uniform intensity quasi-CW linearly chirped pulse output with 10 nm bandwidth. Long-term stability is attained by referencing the cavity length to the etalon using an intra-cavity Hänsch-Couillaud locking scheme.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom