z-logo
open-access-imgOpen Access
Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier
Author(s) -
Yi-Hung Lin,
Chun-Ju Lin,
Gong-Cheng Lin,
GongRu Lin
Publication year - 2011
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.004067
Subject(s) - amplified spontaneous emission , extinction ratio , optical amplifier , optics , transmitter , data stream , physics , amplifier , wavelength division multiplexing , materials science , laser , optoelectronics , telecommunications , wavelength , computer science , channel (broadcasting) , cmos
By controlling the extinction ratio (ER) and overshooting level of the down-stream amplified spontaneous emission (ASE) with a gain-saturation semiconductor optical amplifier (SOA), the down-stream data-erased ASE carrier is re-encoded in an injection-locked weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) up-stream transmitter to implement all-ASE based bi-directional WDM-PON system. The effect of ER on the up-stream transmission performance of the down-stream data-erased ASE injection-locked WRC-FPLD is elucidated via the gain-saturation model. It is observed that the communication criterion with a bit-error-rate of <10⁻⁹ at 2.488 Gbit/s can be met only when ER is reduced to <3 dB and overshooting level <-5 dB. The up-stream WRC-FPLD re-encoded ASE data-stream could improve its signal-to-noise ratio (SNR) to 6.4 dB by minimizing the ER and overshooting level of the down-stream data-erased ASE to 2.4 dB and -7.8 dB, respectively, with the gain-saturated SOA. The SNR can also be improved with higher power injecting into the up-stream transmitter until saturation occurs and the optimal window of the ASE injection power is between -7 and -3 dBm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom