z-logo
open-access-imgOpen Access
Bit-rate variable DPSK demodulation based on cascaded four-wave mixing
Author(s) -
Yongheng Dai,
Chester Shu
Publication year - 2011
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.19.002952
Subject(s) - optics , demodulation , four wave mixing , signal (programming language) , modulation (music) , physics , fiber bragg grating , dispersion (optics) , phase modulation , phase (matter) , wavelength , materials science , nonlinear optics , phase noise , telecommunications , computer science , laser , channel (broadcasting) , acoustics , quantum mechanics , programming language
We report a demodulator for DPSK signals at variable bit rates based on cascaded four-wave mixing (FWM). The demodulation utilizes two FWM processes in a photonic crystal fiber (PCF) with in-between dispersion in a chirped fiber Bragg grating (CFBG). The first FWM generates a wavelength-tunable idler carrying phase information of the signal. A tunable optical delay between the signal and the idler is then introduced by dispersion. The signal, the idler, and the pump are reflected by the CFBG with a reflectance of 99% back to the PCF to initiate the second FWM process. In the second FWM, the phase relationship between the signal and the one-bit-delayed idler determines an amplification or attenuation of the idler, converting phase modulation to intensity modulation. Error-free demodulations have been successfully demonstrated for both NRZ and RZ-DPSK signals at 5 and 10 Gb/s.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom