
Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators
Author(s) -
Shiyang Zhu,
GuoQiang Lo,
DimLee Kwong
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.027802
Subject(s) - extinction ratio , materials science , splitter , optics , optoelectronics , insertion loss , plasmon , photonics , silicon photonics , waveguide , photonic integrated circuit , optical modulator , cmos , phase shift module , phase modulation , wavelength , physics , phase noise
In this paper, a Mach-Zehnder silicon nanoplasmonic electro-optic modulator is proposed and theoretically analyzed. It is composed of horizontal metal-SiO2-Si-metal plasmonic slot waveguides for phase shifting and ultracompact V-shape splitter/combiner to link the plasmonic slot waveguides and the conventional Si dielectric waveguides. The proposed modulator can be directly integrated into existing Si electronic photonic integrated circuits (EPICs) and be fabricated using standard Si complementary metal-oxide-semiconductor (CMOS) technology. The modulator's parameters are optimized through systematic 2-dimensional numerical simulations. For a modulator with 3-µm-long Ag-SiO2(2 nm)-Si(50 nm)-Ag phase shifter and 0.35-µm-long splitter/combiner operating at 1.55-µm wavelength, simulation shows an insertion loss of ~-8 dB, an extinction ratio of ~7.3 dB - with a switching voltage of ~5.6 V, and a bandwidth of ~500 GHz. A possible approach to reduce the switching voltage is addressed.