Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link
Author(s) -
Rameez Asif,
Chien-Yu Lin,
Michael Holtmannspoetter,
Bernhard Schmauß
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.022796
Subject(s) - optics , digital signal processing , transmission (telecommunications) , iterative method , fourier transform , optical fiber , modulation (music) , computer science , multi mode optical fiber , electronic engineering , algorithm , physics , telecommunications , acoustics , quantum mechanics , computer hardware , engineering
The parametric optimization of Digital Backward Propagation (DBP) algorithm for mitigating fiber transmission impairments is proposed and numerically demonstrated for phase modulated signals in mixed-optical fiber transmission link. The optimization of parameters i.e. dispersion (D) and non-linear coefficient (γ) offer improved eye-opening (EO). We investigate the optimization of iterative and non-iterative symmetric split-step Fourier method (S-SSFM) for solving the inverse non-linear Schrödinger equation (NLSE). Optimized DBP algorithm, with step-size equal to fiber module length i.e. one calculation step per fiber span for obtaining higher computational efficiency, is implemented at the receiver as a digital signal processing (DSP) module. The system performance is evaluated by EO-improvement for diverse in-line compensation schemes. Using computationally efficient non-iterative symmetric split-step Fourier method (NIS-SSFM) upto 3.6 dB referenced EO-improvement can be obtained at 6 dBm signal launch power by optimizing and modifying DBP algorithm parameters, based on the characterization of the individual fiber types, in mixed-optical fiber transmission link.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom