Open Access
Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link
Author(s) -
Rameez Asif,
Chien-Yu Lin,
Michael Holtmannspoetter,
Bernhard Schmauß
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.022796
Subject(s) - optics , digital signal processing , transmission (telecommunications) , iterative method , fourier transform , optical fiber , modulation (music) , computer science , multi mode optical fiber , electronic engineering , algorithm , physics , telecommunications , acoustics , quantum mechanics , computer hardware , engineering
The parametric optimization of Digital Backward Propagation (DBP) algorithm for mitigating fiber transmission impairments is proposed and numerically demonstrated for phase modulated signals in mixed-optical fiber transmission link. The optimization of parameters i.e. dispersion (D) and non-linear coefficient (γ) offer improved eye-opening (EO). We investigate the optimization of iterative and non-iterative symmetric split-step Fourier method (S-SSFM) for solving the inverse non-linear Schrödinger equation (NLSE). Optimized DBP algorithm, with step-size equal to fiber module length i.e. one calculation step per fiber span for obtaining higher computational efficiency, is implemented at the receiver as a digital signal processing (DSP) module. The system performance is evaluated by EO-improvement for diverse in-line compensation schemes. Using computationally efficient non-iterative symmetric split-step Fourier method (NIS-SSFM) upto 3.6 dB referenced EO-improvement can be obtained at 6 dBm signal launch power by optimizing and modifying DBP algorithm parameters, based on the characterization of the individual fiber types, in mixed-optical fiber transmission link.