z-logo
open-access-imgOpen Access
Flattened dispersion in silicon slot waveguides
Author(s) -
Lin Zhang,
Yang Yue,
Raymond G. Beausoleil,
Alan E. Willner
Publication year - 2010
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.020529
Subject(s) - dispersion (optics) , optics , materials science , waveguide , wavelength , silicon , slot waveguide , optoelectronics , silicon photonics , physics
We propose a silicon strip/slot hybrid waveguide that produces flattened dispersion of 0 ± 16 ps/(nm∙km), over a 553-nm wavelength range, which is 20 times flatter than previous results. Different from previously reported slot waveguides, the strip/slot hybrid waveguide employs the mode transition from a strip mode to a slot mode to introduce unique waveguide dispersion. The flat dispersion profile is featured by three zero-dispersion wavelengths, which is obtained for the first time in on-chip silicon waveguides, to the best of our knowledge. The waveguide exhibits flattened dispersion from 1562-nm to 2115-nm wavelength, which is potentially useful for both telecom and mid-infrared applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom