z-logo
open-access-imgOpen Access
Linear discrete diffraction and transverse localization of light in two-dimensional backbone lattices
Author(s) -
Yiling Qi,
Guoquan Zhang
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.020170
Subject(s) - diffraction , optics , physics , transverse plane , floquet theory , lattice (music) , excitation , refractive index , quantum mechanics , nonlinear system , structural engineering , acoustics , engineering
We study the linear discrete diffraction characteristics of light in two-dimensional backbone lattices. It is found that, as the refractive index modulation depth of the backbone lattice increases, high-order band gaps become open and broad in sequence, and the allowed band curves of the Floquet-Bloch modes become flat gradually. As a result, the diffraction pattern at the exit face converges gradually for both the on-site and off-site excitation cases. Particularly, when the refractive index modulation depth of the backbone lattice is high enough, for example, on the order of 0.01 for a square lattice, the light wave propagating in the backbone lattice will be localized in transverse dimension for both the on-site and off-site excitation cases. This is because only the first several allowed bands with nearly flat band curves are excited in the lattice, and the transverse expansion velocities of the Floquet-Bloch modes in these flat allowed bands approach to zero. Such a linear transverse localization of light may have potential applications in navigating light propagation dynamics and optical signal processing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here