Ultrashort pulse generation from 156 µm mode-locked VECSEL at room temperature
Author(s) -
Aghiad Khadour,
S. Bouchoule,
Guy Aubin,
JeanChristophe Harmand,
J. Décobert,
Jean-Louis Oudar
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.019902
Subject(s) - materials science , optics , laser , optoelectronics , picosecond , semiconductor laser theory , quantum well , semiconductor , mode locking , physics
We report on a picosecond pulse source delivering near transform-limited pulses in the 1.55 µm wavelength region, based on an optically pumped InP-based mode locked Vertical External Cavity Surface Emitting Laser (VECSEL). The cavity combines two semiconductor elements, a gain structure which includes six strained InGaAlAs quantum wells and a hybrid metal-metamorphic Bragg bottom mirror bonded onto a CVD diamond substrate, and a single quantum well GaInNAs SEmiconductor Saturable Absorber Mirror (SESAM). The laser operates at a repetition frequency of 2 GHz and emits near-transform-limited 1.7 ps pulses with an average output power of 15 mW at room temperature, using 1.7 W pump power at 980 nm. The RF line width of the free running laser has been measured to be less than 1 kHz.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom