A method for achieving super-resolved widefield CARS microscopy
Author(s) -
Kim M. Hajek,
Brad Littleton,
D. J. Turk,
Timothy J. McIntyre,
Halina RubinszteinDunlop
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.019263
Subject(s) - optics , diffraction , raman scattering , physics , image resolution , microscopy , scattering , superresolution , computer science , resolution (logic) , raman spectroscopy , computer vision , artificial intelligence , image (mathematics)
We propose a scheme for achieving widefield coherent anti-Stokes Raman scattering (CARS) microscopy images with sub-diffraction-limited resolution. This approach adds structured illumination to the widefield CARS configuration [Applied Physics Letters 84, 816 (2004)]. By capturing a number of images at different phases of the standing wave pattern, an image with up to three times the resolution of the original can be constructed. We develop a theoretical treatment of this system and perform numerical simulations for a typical CARS system, which indicate that resolutions around 120 nm are obtainable with the present scheme. As an imaging system, this method combines the advantages of sub-diffraction-limited resolution, endogenous contrast generation, and a wide field of view.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom