z-logo
open-access-imgOpen Access
Anomalous behavior in length distributions of 3D random Brownian walks and measured photon count rates within observation volumes of single-molecule trajectories in fluorescence fluctuation microscopy
Author(s) -
Gerd Baumann,
Ignacy Gryczyński,
Zeno FöldesPapp
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.017883
Subject(s) - brownian motion , photon counting , physics , diffusion , molecular physics , molecule , ergodic theory , photon , single molecule experiment , fluorescence , analytical chemistry (journal) , optics , chemistry , mathematics , quantum mechanics , mathematical analysis , chromatography
Based on classical mean-field approximation using the diffusion equation for ergodic normal motion of single 24-nm and 100-nm nanospheres, we simulated and measured molecule number counting in fluorescence fluctuation microscopy. The 3D-measurement set included a single molecule, or an ensemble average of single molecules, an observation volume DeltaV and a local environment, e.g. aqueous solution. For the molecule number N << 1 per DeltaV, there was only one molecule at a time inside DeltaV or no molecule. The mean rate k of re-entries defined by k = N/tau(dif) was independent of the geometry of DeltaV but depended on the size of DeltaV and the diffusive properties tau(dif). The length distribution l of single-molecule trajectories inside DeltaV and the measured photon count rates I obeyed power laws with anomalous exponent kappa =-1.32 approximately -4/3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom