z-logo
open-access-imgOpen Access
Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides
Author(s) -
Daniel R. Mason,
Dmitri K. Gramotnev,
Kwang S. Kim
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.016139
Subject(s) - optics , wavelength , materials science , transmission (telecommunications) , waveguide , asymmetry , dielectric , surface plasmon , interference (communication) , plasmon , physics , optoelectronics , telecommunications , channel (broadcasting) , quantum mechanics , computer science
In this paper, we present a comprehensive numerical study of the wavelength-dependence of transmission through sharp 90 degrees bends in metallic slot waveguides with sub-wavelength localization and varying geometrical parameters. In particular, it is demonstrated that increasing the plasmon wavelength results in a significant increase (up to nearly 100%) of transmission through the bend, combined with a reduction in the mode asymmetry in the second arm of the bend. The mode asymmetry and its relaxation are explained by interference of the transmitted mode with non-propagating and leaky modes generated at the bend. Comparison with the two-dimensional case of a metal-dielectric-metal waveguide is also conducted, showing significant differences for the slot waveguides based on the presence of different non-propagating and leaky modes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom