
Highly efficient phosphorescent organic light-emitting diode with a nanometer-thick Ni silicide / polycrystalline p-Si composite anode
Author(s) -
Y. Z. Li,
Z. L. Wang,
Hai Luo,
Y. Z. Wang,
Wanjing Xu,
Guangzhao Ran,
G. G. Qin,
Wei Zhao,
H. Liu
Publication year - 2010
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.015942
Subject(s) - materials science , phosphorescent organic light emitting diode , crystallite , silicide , anode , phosphorescence , layer (electronics) , quantum efficiency , composite number , optoelectronics , equivalent series resistance , oled , composite material , optics , metallurgy , electrode , chemistry , fluorescence , physics , voltage , quantum mechanics
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.