z-logo
open-access-imgOpen Access
Spatiotemporal sub-wavelength near-field light localization
Author(s) -
Fadi Baida
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.014812
Subject(s) - optics , wavelength , polarization (electrochemistry) , ray , plasmon , light beam , light field , physics , materials science , optoelectronics , chemistry
The control and localization of light at sub-wavelength scale are theoretically demonstrated with a very simple sub-wavelength dimension structure. This is demonstrated through a peculiar structure that can support localized modes which are not linked to any plasmon resonance. It is based on the acronym "FEMTO" that is designed using 26 sub-wavelength rectangular apertures engraved into perfectly conducting metal screen. A polarization-sensitive guided mode through these nano-apertures is at the origin of the light localization. Consequently, sub-wavelength light spots can be achieved with very simple structures illuminated by temporally shaped plane waves. Three parameters are temporally controlled for this purpose: the polarization, the wavelength and the amplitude of the incident beam. It is also demonstrated that replacing the perfect conductor by a real metal with dispersion leads to accentuate both the light confinement and its localization. These results open the path to the conception of optical nano-structures dedicated to sub-wavelength light addressing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom