
Line coding to enhance the performance of 10-Gb/s CPFSK-ASK directly modulated signals
Author(s) -
Zaineb Al-Qazwini,
Hoon Kim
Publication year - 2010
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.18.008360
Subject(s) - line code , amplitude shift keying , optics , keying , frequency shift keying , computer science , phase shift keying , bandwidth (computing) , minimum shift keying , physics , phase modulation , amplitude and phase shift keying , frequency modulation , telecommunications , bit error rate , baseband , phase noise , demodulation , decoding methods , channel (broadcasting)
The major drawback of frequency modulation (FM)-based directly modulated laser (DML) is its non-uniform FM response at low frequency range which gives rise to a severe pattern-dependent performance degradation. In this paper, we investigate the use of line coding to deplete the low-frequency spectral contents of the signal and thus to alleviate the degradation. We examine various line codes (8B/10B, 5B/6B, 7B/8B, 9B/10B, and 64B/66B) with continuous-phase frequency-shift keying/ amplitude-shift keying (CPFSK/ASK) signals generated using a DML and a delay interferometer. Experimental demonstrations are performed with a long pseudorandom bit sequence length of 2(20)-1 and the bandwidth expansion by each code is taken into consideration. The results show that among the five codes we tested, 9B/10B code outperforms the other codes in terms of receiver sensitivity an dispersion tolerance. We demonstrate successful transmission of 10-Gb/s CPFSK-ASK signals over 65-km standard single-mode fiber with a bandwidth expansion of only 11.1%.