z-logo
open-access-imgOpen Access
A bi-stable 2x2 optical switch monolithically integrated with variable optical attenuators
Author(s) -
BoTing Liao,
Hsin-Hong Shen,
Hsin-Hung Liao,
YaoJoe Yang
Publication year - 2009
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.019919
Subject(s) - optical switch , actuator , optical attenuator , optics , attenuation , optical power , fabrication , power (physics) , materials science , computer science , optical fiber , optoelectronics , physics , laser , medicine , fiber optic sensor , alternative medicine , pathology , quantum mechanics , artificial intelligence
This work presents the development of a novel micromachined 2x2 optical switch monolithically integrated with variable optical attenuators. The proposed device can be easily realized by a standard manufacturing process with single photo mask. The key to realizing this device by such a simple approach is the employment the split-cross-bar (SCB) configuration. With this configuration, the fabrication challenges and layout constraints for accommodating all the sub-components of this dual-function device can be completely eliminated. The monolithically-integrated system has four movable mirrors, two bi-stable mechanisms and six actuators. The switching of optical signals is achieved by moving the mirrors attached on the bi-stable mechanisms using four of the actuators. The attenuation of optical power is carried out by moving the mirrors using the other two actuators and the bi-stable mechanisms. Also, only simple in-plane motions are needed for these sub-components to achieve all the functionalities. In addition, the adaption of bi-stable mechanisms can reduce the power consumption and simplify the actuation scheme. The measured insertion losses for both channels are about 1.0~1.1 dB, and the cross-talk is less than -60 dB. The attenuation range is about 30 dB for a maximum applied voltage of 20 V. Also, the measured switching time is less than 4 ms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom