z-logo
open-access-imgOpen Access
Optical mirror trap with a large field of view
Author(s) -
Maximilian Pitzek,
Ruth Steiger,
Gregor Thalhammer,
Stefan Bernet,
Monika RitschMarte
Publication year - 2009
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.019414
Subject(s) - optical tweezers , optics , holography , numerical aperture , trap (plumbing) , microscope , physics , trapping , optical force , range (aeronautics) , aperture (computer memory) , materials science , wavelength , ecology , meteorology , acoustics , composite material , biology
Holographic optical tweezers typically require microscope objectives with high numerical aperture and thus usually suffer from the disadvantage of a small field of view and a small working distance. We experimentally investigate an optical mirror trap that is created after reflection of two holographically shaped collinear beams on a mirror. This approach combines a large field of view and a large working distance with the possibility to manipulate particles in a large size range, since it allows to use a microscope objective with a numerical aperture as low as 0.2. In this work we demonstrate robust optical three-dimensional trapping in a range of 1mm x 1mm x 2mm with particle sizes ranging from 1.4 mum up to 45 mum. The use of spatial light modulator based holographic methods to create the trapping beams allows to simultaneously trap many beads in complex, dynamic configurations. We present measurements that characterize the mirror traps in terms of trap stiffness, maximum trapping force and capture range.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here